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Failure Criteria for Polymeric Solids 

L. NICOLAIS* and A. T .  DIBENEDETTO, Materiab Research 
Laboratory, Washington University, St. Louis, Missouri 63130 

Synopsis 
A theory for predicting the stress-strain characteristics of polymeric solids is developed 

in terms of a description of microdefect formation. The process of irreversible change in 
these solids is assumed to be a combination of nucleation of submicroscopic defects at 
stress inhomogeneities and their subsequent growth to macroscopic dimensions. Strain- 
ing results in the generation of crazes and cracks which can lead to catastrophic failure 
through either a general yielding of the material or by brittle fracture. It is assumed 
that nucleation of submicroscopic defects is an activated process and that defect growth 
is one-dimensional and linear. The total strain is expressed as the sum of an elastic 
recoverable strain and a nonlinear, nonrecoverable strain, and expressions are obtained 
for the stress as a function of time, temperature, and loading history. The criterion for 
yielding is defined in terms of a gross volume change associated with cavitation within 
crazes. The sum of the normal Poisson expansion plus this additional volume change 
leads to a deflection of the stress-strain curve. The criterion for brittle failure is de- 
fined in terms of a critical defect size. If the defects grow to their critical size before the 
stress-strain curve reaches a maximum, brittle failure occurs. The parameters of the 
resulting model are calculated for polyphenylene oxide polymer based on constant rate of 
loading experiments, and then the general creep behavior, including the time required 
under constant load for cold flow, is predicted. Experimental data are shown to agree 
with these predictions. 

INTRODUCTION 
At temperatures well below the primary glass transition, most organic 

polymers exhibit either brittle or ductrile failure, depending upon the load 
and temperature history imposed on the material. When ductile, these 
polymers are tough and resistant to impact, and when brittle, they are not. 
Polyblending with finely dispersed rubber particles sometimes results in 
large increases in toughness, while polyblending with coarse, rigid particles 
sometimes results in increased brittleness. 

The difficulty in describing the stress-strain behavior is complicated by 
many factors, of which the formation and growth of defects during loading is 
perhaps the most important. It is well known that the presence of stress 
inhomogeneities and/or finely dispersed second phases can induce crazes, 
cold flow, and a multitude of interacting cracks. It is the purpose of this 
paper to offer a rational theory to describe the stress-strain behavior of 
glassy polymeric solids. 
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THEORY 
The process of irreversible change in a polymeric solid is assumed to be a 

combination of nucleation of submicroscopic defects a t  stress inhomogenei- 
ties and their subsequent growth to macroscopic dimensions. These de- 
fects might be either true cracks, in which case continued straining of the 
material results in the generation of a volume change in the solid, or they 
might be crazes, in which case continued straining of the material results in 
the generation of a structured region analogous to that of a porous sponge 
in which the cell walls are highly drawn.2 These porous regions may be 
thought of as aggregates of microscopic cavities within the material, which 
concentrate stress in a manner similar to a true crack. In  any case, they 
lead to catastrophic failure through either a general yielding of the material 
or a brittle f r a ~ t u r e . ~ , ~  

I n  developing any theory of failure, it is necessary to set criteria for both 
types of failure and then predict which will occur first under a given set of 
loading conditions. 

In  this paper, we deal specifically with amorphous polymeric solids which 
tend to craze under the influence of an external load. It has been observed 
that under a unidirectional tensile load, crazes will nucleate and grow per- 
pendicular to the direction of loading. Under certain conditions, they tend 
to overlap and coalesce to form a nearly continuous zone of crazed material 
which ultimately leads to a general cold drawing, or macroscopic yielding, of 
the solid. This condition can be observed experimentally by the develop- 
ment of necking and optical birefringence in the solid, or, less precisely by 
the appearance of an apparent maximum in the engineering stress-strain 
curve. Under certain conditions, these crazes can grow to a greater length 
than can be tolerated by the material, and the craze rapidly changes to a 
macroscopic crack which propagates catastrophically, causing failure in a 
brittle manner. 

It is assumed that the nucleation of craze sites is an activated process. 
Based on the work of Zhurkov et aL15 one can empirically justify the follow- 
ing form for the initial nucleation rate: 

dt 

where No is a constant, AEN is an activation energy, and u*/(n - 1) is a 
characteristic stress constant. For very long-term loading, Zhurkov's data 
show that it is necessary to account for an exponential decrease in the nucle- 
ation rate using a decay factor exp - t /[h(u,T)] .  However, eq. (1) is satis- 
factory for short-term stress-strain behavior. 

Once craze sites have been nucleated, their growth can be represented by a 
one dimensional, linear growth process.6 It is assumed that the growth 
rate dG/dt is given by 

U - = Go exp - - AE o> sinh 7 
dG dt ( RT 
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where GO is a constant, AEG is an activation energy, and u* is a characteris- 
tic stress constant. 

The isothermal rate of formation of microcavities within the crazed vol- 
ume, (dVJd t ) , ,  can then be obtained from the product of nucleation and 
growth rates as 

dt (3) 
d G  (n - 1). (%) = PoN(t) - = B ( T )  sinh -? lt sinh 

U* T dt U* 

where 

and PO is a porosity factor for the craze and is assumed to be constant. 
I n  the glassy state, one can neglect pure viscous flow, and, following the 

suggestion of DiBenedetto and Trachtej7 the total strain can be expressed as 
the sum of two terms, a linear elastic (and recoverable) strain and a non- 
linear (and irrecoverable) strain. The elastic strain is equated to the initial 
elasticity of the material u/Es ,  and the irrecoverable strain is equated to the 
strain caused by the additional volume created by the microcavities in the 
crazed regions: 

where u is the stress, Es is the initial elastic modulus, I.( is the Poisson ratio, 
and V,( t )  is the microvoid volume obtained from integration of eq. (3). 

Equation (5) gives the relationship between stress, strain, temperature, 
and time. In  order to fix a point of failure for the material, failure criteria 
must be established. From Table I and also from data on other polymers7 
it has been found experimentally that the irrecoverable strain c p  a t  the yield 
point is independent of strain rate and a linear function of temperature: 

where b is a constant and T ,  is the maximum temperature at which craze 
sites can nucleate. The form of eq. (6) is the same as that obtained from 
the development of free-volume but in this paper the volume V ,  
is merely the microvoid volume within the crazes, and the constants b and 
T ,  are measurable parameters. 

It is also assumed that the criterion for brittle failure is determined by a 
critical flaw length Zc*(T,pc) that is primarily a function of temperature and 
flaw density. 

Thus, whether the material yields before brittle fracture depends upon 
whether the formation of crazes develops sufficient microvoid volume V,(t,) 
before reaching a critical flaw size lc*. Which criterion is reached first de- 
pends upon the relative rates of nucleation and growth. The stress-strain 
behavior under some well-defined loading conditions will be considered next. 
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Creep 

In  a creep experiment, the stress is constant at uo. The integration of 
eq. (3) and substitution of V,(t) into eq. (5) gives 

The first term on the right side of eq. (7) represents the recoverable elastic 
deformation and the second term, the irrecoverable deformation associated 
with microvoid formation. The use of eq. (6) for the yield criterion leads 
to the following expression for the time to yield t, (i.e., the time required to 
initiate cold drawing) : 

2b(T, - T )  'I' 
tu = {B(T)  s i n h y t  (8) 

Integration of eq. (2) gives the defect size at the yield point G(t,) as 

G(t,) = Go ( exp - ~ y!)(sinh 3)- (9) 

If G(t,) > Zc*,  brittle failure occurs before cold drawing. 

Constant Loading Rate 

In  this case, the stress is a linear function of time, u = Esrot, and the rate 
The integration of eq. (3) gives of loading u is constant and equal to E,ro. 

B (T) u* 
(n - l )u2  

vt = 

L 2n 2(2 - n) u* n(2 - n) ' '_I 

From experimental observation it is found that n > 1 and u,/u* >>> 1, 
so that for all practical purposes over most of the stress-strain curve, eq. 
(10) reduces to 

B(T)u*~ nu Vf A exp -. 42n(n - 1) u* 

Substitution of eq. (11) into eq. (5) gives 

U B(T) u * 2  (exp:) 
E t ( U )  A - + 

Es 4k2n(n - 1)(1 - 2p) 
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Since the criterion for yielding is Vf(a,) = b(T, - T ) ,  the yield stress can 
be obtained froni eq. (11) as 

4b ( T ,  - T)n(n - 1) 
exp- = 

U* 

The sensitivity of yield stress to  loading rate is given by 

da, 2a* - 
d l n i  n (14) 

which predicts that yield stress is a linear function of the log of the rate of 
loading. The temperature dependence of yield stress is given by 

- dull = -C[(nEN - U G )  + 1 7  (15) dT n RT2 (T ,  - T )  

which shows that the temperature dependence of yield stress is controlled 
primarily by the difference in activation energies between the nucleation and 
growth processes. 

The defect size a t  the yield point can be obtained from integration of eq. 
(2)  

Constant Strain Rate 

The major difficulty in analyzing constant strain rate data is that the 
rate of formation of microvoid volume is defined as an integral of stress over 
time, eq. (3), and since the stress-strain curve is nonlinear, the dependence 
of stress on time is not known. One can, however, define the stress-strain 
relation as a = E,(a)(rot), where E,(u) is a stress dependent modulus and 
ro is the rate of straining. From observations of experimental stress-strdn 
curves, a reasonable expression for the time dependence of the stress to 
nearly the yield point is 

clo . 6U 
- = Esoro exp - - 
dt U* 

where 6 is a constant of the order of 0.01 to 0.1. 
(3) leads to  

The use of eq. (17) ineq. 

v, " 
4 Eso2r02(n + 6 - l ) (n  - 26) 

and 

. 2u* __ - __-. - 
d In rc n + 26 
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As long as the stress-strain curve is nearly linear, constant rate of loading 
and constant rate of straining result in nearly the same behavior, with the 
yield stress being slightly less dependent on strain rate than on stress rate. 

EXPERIMENTAL RESULTS 

The material studied was General Electric's Grade 631-1 11 polyphenyl- 
ene oxide with a glass transition temperature T ,  = 210°C, a Poisson's ratio 
of 0.35, and the following structural formula: 

Test specimens were compression molded a t  285"C, followed by a slow cool- 
ing to  room temperature. All samples were annealed below T ,  to minimize 
molding stresses. Standard ASTM tensile tests were carried out on a mod- 

E 

Fig. 1. Typical engineering stress-strain curve for PPO. 
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Fig. 2. Effect of strain rate on yield stress. 
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Fig. 3. Effect of temperature on yield stress. 

ified Instron testing machine which could be controlled for both constant 
load and constant rate of loading as well as constant rate of deformation. 
Tests were conducted at  temperatures ranging from 34°C to 210°C and at  
strain rates ranging from 0.00526 to 0.525 in./in.-min. 

A typical stress-strain curve is shown in Figure 1. The yield point was 
assumed to be the maximum in the curve. If failure occurred before this 
maximum, it was defined as brittle failure. The elastic strain was mea- 
sured from the initial elastic modulus, and the irrecoverable deformation 
was associated with the nonlinear portion of the stress-strain curve. A 
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Fig. 4. Illustration of the appearances of crazes. 

summary of the yield stress data at constant loading rate and constant de- 
formation rate over a range of temperatures is given in Figure 2. Time- 
temperature superpositioning at a reference temperature of 34"C9 was used 
to condense the data, and the required shift factor aT is given by 

- 28.0 
8750 
T log,, UT = ~ 

where T is the temperature in degrees Kelvin. 



1594 NICOLAIS AND DIBENEDETTO 
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A <=.0262 min" 
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T ' C  

Fig. 5. Effect of temperature and strain rate on average defect size. 

Time (min.) 

Fig. 6. Nonrecoverable deformation in creep as a function of time. 
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The effect of temperature on yield stress is shown in Figure 3. Table I 
shows that the irreversible strain a t  the yield point is a linear function of 
temperature and independent of loading rate. I ts  temperature dependence 
can be expressed as follows: 

( ~ p ) ~  = V,(tu)(1-2p)  = 3.09X10-5(525 - T). 
Figure 4 illustrates the appearance of the crazes for two test conditions. 

An average defect size was measured from such pictures, and the results are 
shown in Figure 5 .  Defect size is seen to  be a complex function of strain 
rate and temperature. As long as the defect size was below the locus of 
points representing lc*, the failure was by yielding, while if the defect size 
was greater than lC*,  the failure was brittle. It is reasonable to expect tha 
the critical defect size is a function of temperature, defect density, anddefect 
size distribution, so that it is probably more realistic to imagine a narrow 
zone about the locus of points representing lc* which divides the brittle and 
ductile 

Fig. 7. Time to yield under constant load. 
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Fig. 8. Effect of creep stress on average defect size. 

From the data shown in Figures 2 to 5 and using eqs. (4) and (12) to (16), 
one may evaluate all of the constants required to define the stress-strain 
behavior of the material. These values are listed below: 

b = 3.09 X 10-sOK-l 
T m  = 525°K 
U* = 334 psi 
n = 2.3 
AEN = 41,700 cal/g-mole 
AE, = 32,300 cal/g-mole 

The values for the activation energies are reasonable for the assumed pro- 
cesses, and the value of u* is very low compared to the yield stresses in the 
material. Because of this latter fact, the constant POGONO is susceptible to 
large error. The limits of f 100% in POGONO correspond to a f 100 psi error 
in load measurement, or a f 1°C in temperature control. 

The primary value of such a model is to predict the mechanical behavior 
in other modes of loading, based on the data from constant loading rate ex- 
periments. By using eqs. (7) to (9), one can calculate the irreversible de- 
formation, the time to yield, and the defect size at  the yield point under a 
constant load. Creep recovery experiments were run in order to experi- 
mentally determine these quantities. The theoretical curves and the ex- 
perimental data are shown in Figures 6 to 8. The irrecoverable deforma- 
tion as a function of time was calculated from the second term on the right- 
hand side of eq. (7). The experimental values shown on Figure 6 agreed 
with theory to within experimental accuracy. Similarly, the experimental 

PCGQNO = 2x1020 f 100% 
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values for time to yield agreed with those calculated from eq. (8), as shown 
in Figure 7. When the failure was in the brittle mode, it occurred earlier 
than the calculated value for yield time. These points are marked by the 
symbol B in Figure 7. Equation (9) is used to calculate average defect size 
a t  yield, and the theoretical curves are plotted in Figure S. The values of 
I,* shown in Figure 8 were obtained from Figure 5. As predicted, when the 
defect size was above l c* ,  a brittle failure was encountered. When ductile 
failure was attained, the calculated values of defect size agreed wit,h experi- 
ment. 

CONCLUDING REMARKS 

A theory for predicting the stress-strain characteristics of polymeric 
solids has been presented. The process of irreversible change is assumed to 
be a combination of nucleation of submicroscopic defects a t  stress inhomo- 
geneities and their subsequent growth to macroscopic dimensions. The 
total strain is expressed as the sum of an elastic recoverable strain and a 
nonlinear, nonrecoverable strain, and expressions are obtained for the stress 
as a function of time, temperature, and loading history. The criterion for 
yielding is defined in terms of a gross volume change associated with cavita- 
tion within crazes. The sum of the normal Poisson expansion plus this 
additional volume change leads to a deflection of the stress-strain curve. 
The criterion for brittle failure is defined in terms of a critical defect size. 
If the defects grow to their critical size before the stress-strain curve reaches 
a maximum, brittle failure occurs. 

It has been shown that the resulting model quantitatively describes the 
mechanical behavior of polyphenylene oxide and that, by using stress-strain 
data obtained a t  constant rate of loading, one can predict the creep behavior 
of the material a t  constant load. A description of the ductile-brittle transi- 
tion has also been presented, and it has been shown that one can qualita- 
tively define the locus of points separating the ductile from the brittle 
behavior. 

Concerning this latter point, it is well known that brittle failure is a sto- 
chastic process and that one cannot predict with absolute certainty the time 
to failure. This implies that the brittle-ductile transition cannot be repre- 
sented by a single locus of points, but rather the two regions are separated 
by a narrow transition zone within which both modes of failure are more or 
less equally probable. A second point is that the concept of a simple critical 
crack dimension for brittle failure is oversimplified, and the criterion for 
brittle failure must certainly be examined in terms of stress intensity factors 
around crazes. Both of these points are presently under study. 

This work, contribution I-IPC 71-138 from the Moiisarito/Washingtori University 
Association, was sponsored by the Advanced Research Projects Agency, J)epartment of 
Defense, under Office of Naval Research Contract No. N00014-67-C-0’18 (formerly 
N00014-66-C-0045). 
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